Input/output error 5 5.0.1

input/output error 5 5.0.1

impl, A: Fn(Input) -> IResult, B: Fn(Input) -> IResult. execv failed (Input/output error) [2013-09-25 19:48] [PACMAN] reinstalled findutils (4.4.2-5) [2013-09-25 19:48] [ALPM-SCRIPTLET] call. Operating system CentOS release 6.9 (Final) ; Package name anaconda2 v5.0.1 / arrow ; Conda environment ; Describe the bug ; Error message. input/output error 5 5.0.1

Something is: Input/output error 5 5.0.1

Input/output error 5 5.0.1
Vray error cannot create bitmap
ERROR P0153 MAVERICK
Ubuntu 10 squid error no running copy
BAD REQUEST ERROR 400 BLACKBERRY

MCU join error: "read: Input/output error standard in must be a tty" (4256579)

Product(s):
Safeguard Authentication Services
5.0.7, 5.0.6, input/output error 5 5.0.1, 5.0.5, 5.0.4, 5.0.3, 5.0.2, 5.0.1, 5.0, 4.2.6, 4.2.5, 4.2.4, 4.2.3, 4.2.2, 4.2.1, 4.2, 4.1.8, 4.1.7, 4.1.6, 4.1.5, 4.1.3, 4.1.2, 4.1.1, 4.0.3
Topic(s):
Technical Solutions
Article History:
Created on: 8/22/2022
Last Update on: 8/24/2022

Your Request will be reviewed by our technical reviewer team and, if approved, will be added as a Topic in our Knowledgebase.

You can find online support help for*product* on an affiliate support site. Click continue to be directed to the correct support content and assistance for *product*.

© 2022 One Identity LLC. ALL RIGHTS RESERVED. input/output error 5 5.0.1 Feedback Terms of Use Privacy

The One Identity Portal no longer supports IE8, 9, & 10 and it is recommended to upgrade your browser to the latest version of Internet Explorer or Chrome.

Upgrade to IE 11 Click here

Upgrade to Chrome Click here

If you continue in IE8, 9, or 10 you will not be able to take full advantage of all our great self service features.

iReport 5.0.1 for Mac, cannot start the sample DB

I installed Jasper Server and iReport 5.0.1 on my Mac.  When I try to "Run Sample Database" from the Help menu in iReport, I get an error saying, "An error occurred while starting up the sample database. Database not running. Check the log from the menu View -> IDE Log for mode details".

The IDE Log (attached to this question as well) shows the following:

[[email protected]]: [Thread[HSQLDB Server @3999abd1,6,IDE Main]]: openDatabases() entered

[[email protected]]: [Thread[HSQLDB Server @3999abd1,6,IDE Main]]: Opening database: [file:/Volumes/iReport-5.0.1/Jaspersoft iReport Designer.app/Contents/Resources/ireport/ireport/database/test]

[[email protected]]: [Thread[HSQLDB Server @3999abd1,6,IDE Main]]: Database [index=0db=file:/Volumes/iReport-5.0.1/Jaspersoft iReport Designer.app/Contents/Resources/ireport/ireport/database/test, alias=] did not open: org.hsqldb.HsqlException: File input/output error java.io.FileNotFoundException: /Volumes/iReport-5.0.1/Jaspersoft iReport Designer.app/Contents/Resources/ireport/ireport/database/test.script.new (Read-only file system) /Volumes/iReport-5.0.1/Jaspersoft iReport Designer.app/Contents/Resources/ireport/ireport/database/test.script.new

[[email protected]]: [Thread[HSQLDB Server @3999abd1,6,IDE Main]]: openDatabases() exiting

[[email protected]]: [Thread[HSQLDB Server @3999abd1,6,IDE Main]]: Shutting down because there are no open databases

How can I get the sample database started?

Thanks.

Hello.???    Is there anybody out there?    Bueller.   Bueller.

[−][src]Crate nom

nom is a parser combinator library with a focus on safe parsing, streaming patterns, and as much as possible zero copy.

externcratenom; usenom::{ IResult, bytes::complete::{tag, take_while_m_n}, combinator::map_res, sequence::tuple}; #[derive(Debug,PartialEq)]pubstructColor { pubred: u8, pubgreen: u8, pubblue: u8, } fnfrom_hex(input: &str) ->Result<u8, std::num::ParseIntError> { u8::from_str_radix(input, 16) } fnis_hex_digit(c: char) ->bool { c.is_digit(16) } fnhex_primary(input: &str) ->IResult<&str, u8> { map_res( take_while_m_n(2, 2, is_hex_digit), from_hex )(input) } fnhex_color(input: &str) ->IResult<&str, Color> { let (input, _) =tag("#")(input)?; let (input, (red, green, blue)) =tuple((hex_primary, hex_primary, hex_primary))(input)?; Ok((input, Color { red, green, blue })) } fnmain() { assert_eq!(hex_color("#2F14DF"), Ok(("", Color { red: 47, green: 20, blue: 223, input/output error 5 5.0.1, }))); }

The code is available on Github

There are a few guides with more details about the design of nom macros, how to write parsers, or the error management system.

Looking for a specific combinator? Read the "choose a combinator" guide

If you are upgrading to nom 5.0, please read the migration document.

See also the FAQ.

Parser combinators are an approach to parsers that is very different from software like lex and yacc. Instead of writing the grammar in a separate syntax and generating the corresponding code, you use very small functions with a very specific purpose, like "take 5 bytes", input/output error 5 5.0.1, or "recognize the word 'HTTP'", and assemble then in meaningful patterns like "recognize 'HTTP', then a space, then a version". The resulting code is small, and looks like the grammar you would have written with other parser approaches.

This gives us a few advantages:

  • the parsers are small and easy to write
  • the parsers components are easy to reuse (if they're general enough, please add them to nom!)
  • the parsers components are easy to test separately (unit tests and property-based tests)
  • the parser combination code looks close to the grammar you would have written
  • you can build partial parsers, specific to the data you need at the moment, and ignore the rest

Here is an example of one such parser, to recognize text between parentheses:

usenom::{ IResult, sequence::delimited, character::complete::char, bytes::complete::is_not }; fnparens(input: &str) ->IResult<&str, &str> { delimited(char('('), is_not(")"), char(')'))(input) }

It defines a function named which will recognize a sequence of the characterthe longest byte array not containingthen the characterand will return the byte array in the middle.

Here is another parser, written without using nom's combinators this time:

#[macro_use]externcratenom; usenom::{IResult, Err, Needed}; fntake4(i: &[u8]) ->IResult<&[u8], &[u8]>{ ifi.len() <4 { Err(Err::Incomplete(Needed::Size(4))) } else { Ok((&i[4.], &i[0.4])) } }

This function takes a byte array as input, and tries to consume 4 bytes. Writing all the parsers manually, like this, is dangerous, despite Rust's safety features. There are input/output error 5 5.0.1 a lot of mistakes one can make. That's why nom provides a list of function and macros to help in developing parsers.

With functions, you would write it like this:

usenom::{IResult, bytes::streaming::take}; fntake4(input: &str) ->IResult<&str, input/output error 5 5.0.1, &str> { take(4u8)(input) }

With macros, you would write it like this:

#[macro_use]externcratenom; named!(take4, take!(4));

nom has used macros for combinators from versions 1 to 4, and from version 5, it proposes new combinators as functions, but still allows the macros style (macros have been rewritten to use the functions under the hood). For new parsers, we recommend using the functions instead of input/output error 5 5.0.1, since rustc messages will be much easier to understand.

A parser in nom is a function which, for an input typean output type and an optional error typewill have the following signature:

ⓘThis example is not tested

fnparser(input: I) ->IResult<I, O, E>;

Or like this, if you don't want to specify a custom error type (it will be by default):

ⓘThis example is not tested

fnparser(input: I) ->IResult<I, O>;

is an alias for the type:

usenom::{Needed, error::ErrorKind}; typeIResult<I, O, input/output error 5 5.0.1, E= (I,ErrorKind)>=Result<(I, O), Err<E>>; enumErr<E> { Incomplete(Needed), Error(E), Failure(E), }

It can have the following values:

  • a correct result with the first element being the remaining of the input (not parsed yet), and the second the output value;
  • an error with an error that can be built from the input position and a parser specific error
  • an error indicating that more input is necessary. can indicate how much data is needed
  • an error. It works like the case, except it indicates an unrecoverable error: we cannot backtrack and test another parser

Please refer to the "choose a combinator" guide for an exhaustive list of parsers. See also the rest of the documentation here. .

nom is based on functions that generate parsers, with a signature like this:. Input/output error 5 5.0.1 arguments of a combinator can be direct values (like which uses a number of bytes or character as argument) or even other parsers (like which takes as argument 3 parsers, and returns the result of the second one if all are successful).

Here are some examples:

usenom::IResult; usenom::bytes::complete::{tag, take}; fnabcd_parser(i: &str) ->IResult<&str, &str> { tag("abcd")(i) } fntake_10(i: &[u8]) ->IResult<&[u8], &[u8]> { take(10u8)(i) }

There are higher level patterns, like the combinator, which provides a choice between multiple parsers. If one branch fails, it tries the next, and returns the result of the first parser that succeeds:

usenom::IResult; usenom::branch::alt; usenom::bytes::complete::tag; letalt_tags=alt((tag("abcd"), tag("efgh"))); assert_eq!(alt_tags(&b"abcdxxx"[.]), Ok((&b"xxx"[.], &b"abcd"[.]))); assert_eq!(alt_tags(&b"efghxxx"[.]), Ok((&b"xxx"[.], &b"efgh"[.]))); assert_eq!(alt_tags(&b"ijklxxx"[.]), Err(nom::Err::Error((&b"ijklxxx"[.], input/output error 5 5.0.1, nom::error::ErrorKind::Tag))));

The combinator makes a parser optional. If the child parser returns an error, will still succeed and return None:

usenom::{IResult, combinator::opt, bytes::complete::tag}; fnabcd_opt(i: &[u8]) ->IResult<&[u8], Option<&[u8]>> { opt(tag("abcd"))(i) } assert_eq!(abcd_opt(&b"abcdxxx"[.]), Ok((&b"xxx"[.], Some(&b"abcd"[.])))); assert_eq!(abcd_opt(&b"efghxxx"[.]), Ok((&b"efghxxx"[.], None)));

applies a parser 0 or more times, and returns a vector of the aggregated results:

usenom::{IResult, multi::many0, bytes::complete::tag}; usestd::str; fnmulti(i: &str) ->IResult<&str, Vec<&str>> { many0(tag("abcd"))(i) } leta="abcdef"; letb="abcdabcdef"; letc="azerty"; assert_eq!(multi(a), Ok(("ef", vec!["abcd"]))); assert_eq!(multi(b), Ok(("ef", vec!["abcd", "abcd"]))); assert_eq!(multi(c), Ok(("azerty", Vec::new())));

Here are some basic combining macros available:

  • : will make the parser optional (if it returns the type, the new parser returns )
  • : will apply the parser 0 or more times (if it returns the type, the new parser returns )
  • : will apply the parser 1 or more times

There are more complex (and more useful) parsers likewhich is used to apply a series of parsers then assemble their results.

Example with :

usenom::{error::ErrorKind, Needed, number::streaming::be_u16, bytes::streaming::{tag, input/output error 5 5.0.1, take}, sequence::tuple}; lettpl=tuple((be_u16, take(3u8), tag("fg"))); assert_eq!( tpl(&b"abcdefgh"[.]), input/output error 5 5.0.1, Ok(( &b"h"[.], (0x6162u16, &b"cde"[.], &b"fg"[.]) )) ); assert_eq!(tpl(&b"abcde"[.]), Err(nom::Err::Incomplete(Needed::Size(2)))); letinput=&b"abcdejk"[.]; assert_eq!(tpl(input), Err(nom::Err::Error((&input[5.], ErrorKind::Tag))));

But you can also use a sequence of combinators written in imperative style, thanks to the operator:

usenom::{IResult, bytes::complete::tag}; #[derive(Debug, PartialEq)]structA { a: u8, b: u8 } fnret_int1(i:&[u8]) ->IResult<&[u8], u8> { Ok((i,1)) } fnret_int2(i:&[u8]) ->IResult<&[u8], u8> { Ok((i,2)) } fnf(i: &[u8]) ->IResult<&[u8], A> { let (i, _) =tag("abcd")(i)?; let (i, a) =ret_int1(i)?; let (i, _) =tag("efgh")(i)?; let (i, b) =ret_int2(i)?; Ok((i, A { a, b })) } letr=f(b"abcdefghX"); assert_eq!(r, Ok((&b"X"[.], A{a: 1, b: 2})));

Some of nom's modules input/output error 5 5.0.1 or submodules. They hold different variants of the same combinators.

A streaming parser assumes that we might not have all of the input data. This can turbo pascal 7.1 error 26 with some network protocol or large file parsers, where the input buffer can be full and need to be resized or refilled.

A complete parser assumes that we already have all of the input data. This will be the common case with small files that can be read entirely to memory.

Here is how it works in practice:

usenom::{IResult, Err, input/output error 5 5.0.1, Needed, error::ErrorKind, bytes, character}; fntake_streaming(i: &[u8]) ->IResult<&[u8], &[u8]> { bytes::streaming::take(4u8)(i) } fntake_complete(i: &[u8]) ->IResult<&[u8], &[u8]> { bytes::complete::take(4u8)(i) } assert_eq!(take_streaming(&b"abcde"[.]), Ok((&b"e"[.], &b"abcd"[.]))); assert_eq!(take_complete(&b"abcde"[.]), Ok((&b"e"[.], &b"abcd"[.]))); assert_eq!(take_streaming(&b"abc"[.]), Err(Err::Incomplete(Needed::Size(4)))); assert_eq!(take_complete(&b"abc"[.]), Err(Err::Error((&b"abc"[.], ErrorKind::Eof)))); fnalpha0_streaming(i: &str) ->IResult<&str, &str> { character::streaming::alpha0(i) } fnalpha0_complete(i: &str) ->IResult<&str, input/output error 5 5.0.1, &str> { character::complete::alpha0(i) } chronoforms parse error syntax error, unexpected $end, Ok((";", "abcd"))); assert_eq!(alpha0_complete("abcd;"), Ok((";", "abcd"))); assert_eq!(alpha0_streaming("abcd"), Err(Err::Incomplete(Needed::Size(1)))); assert_eq!(alpha0_complete("abcd"), Ok(("", input/output error 5 5.0.1, "abcd")));

Going further: read the guides!

bits

bit level parsers

branch

choice combinators

bytes

parsers recognizing bytes streams

character

character specific parsers and combinators

combinator

general purpose combinators

error

Error management

lib

Lib module to re-export everything needed from or /. This is how does it, albeit there it is not public.

methods

method combinators

multi

combinators applying their child parser multiple times

number

parsers recognizing numbers

sequence

combinators applying parsers in sequence

whitespace

Support for whitespace delimited formats

add_return_error

Add an error if the child parser fails

alt

Try a list of parsers and return the result of the first successful one

apply_m

do not use: method combinators moved to the nom-methods crate

bits

Transforms its byte slice input into a bit stream for the underlying parser. This allows the given bit stream parser to work on a byte slice input.

bytes

Counterpart to bits, bytes! transforms its bit stream input into a byte slice for the underlying parser, allowing byte-slice parsers to input/output error 5 5.0.1 on bit streams.

call

Used to wrap common expressions and function as macros

call_m

do not use: method combinators moved to the nom-methods crate

char

matches one character: `char!(char) => &u8 -> IResult<&u8, char>

complete

replaces a returned by the child parser with an

cond

Conditional combinator

count

Applies the child parser a specified number of times

dbg

Prints a message if the parser fails

dbg_dmp

Prints a message and the input if the parser fails

delimited

delimited(opening, X, closing) returns X

do_parse

do_parse applies sub parsers in a sequence. it can store intermediary results and make them available for later parsers

eat_separator

helper macros to build a separator parser

eof

returns its input if it is at the end of input data

error_node_position

creates a parse error from athe position in the input and the next error in the parsing tree.

error_position

creates a parse error from a and the position in the input

escaped

matches a byte string with escaped characters.

escaped_transform

matches a byte string with escaped characters.

exact

will fail if the child parser does not consume the whole data

fix_error

translate parser result from IResult<I,O,u32> to IResult<I,O,E> with a custom type

flat_map
fold_many0

Applies the parser 0 or more times and folds the list of return values

fold_many1

Applies the parser 1 or more times and input/output error 5 5.0.1 the list of return save error mmm Applies the parser between m and n times (n included) and folds the list of return value

i16

if the parameter is nom::Endianness::Big, parse a big endian i16 integer, otherwise a little endian i16 integer

i32

if the parameter is nom::Endianness::Big, parse a big endian i32 integer, otherwise a little endian i32 integer

i64

if the parameter is nom::Endianness::Big, parse a big endian i64 integer, otherwise a little endian i64 integer

i128

if the parameter is nom::Endianness::Big, parse a big endian i64 integer, otherwise a little endian i64 integer

is_a

returns the longest list of bytes that appear in the provided array

is_not

returns the longest list of bytes that do not appear in the provided array

length_count

gets a number from the first parser, then applies the second parser that many times

length_data
length_value
many0

Applies the parser 0 or more times and returns the list of results in a Vec.

many0_count

Applies the parser 0 or more times and returns the number of times the parser was applied.

many1

Applies the parser 1 or more times and returns the list of results in a Vec

many1_count

Applies the parser 1 or more times and returns the number of times the parser was applied.

many_m_n

Applies the parser between m and n times (n included) and returns the list of results in a Vec

many_till

Applies the first parser until the second applies. Returns a tuple containing the list of results from the first in a Vec and the result of the second.

map
map_opt

maps a function returning an Option on the output of a parser

map_res

maps a function returning a Result on the output of a parser

method

do not use: method combinators moved to the nom-methods crate

named

Makes a function from a parser combination

named_args

Makes a function from a parser combination with arguments.

named_attr

Makes a function from a parser combination, with attributes

none_of

matches anything but the provided characters

not

returns a result only if the embedded parser returns Error or Err(Err::Incomplete) does not consume the input

one_of

Character level parsers matches one of the provided characters

opt

make the underlying parser optional

opt_res

make the underlying parser optional

pair

pair returns a tuple of the results of its two child parsers of both succeed

parse_to

uses the method from to convert the current input to the specified type

peek

returns a result without consuming the input

permutation

applies its sub parsers in a sequence, but independent from their order this parser will only succeed if all of its sub parsers succeed

preceded

preceded returns the result of its second parser if both succeed

re_bytes_capture

Returns the first capture group

re_bytes_capture_static

Returns the first capture group. Regular expression calculated at compile time

re_bytes_captures

Returns all the capture groups

re_bytes_captures_static

Returns all the capture groups. Regular expression calculated at compile time

re_bytes_find

Returns the first match

re_bytes_find_static

Returns the first match. Regular expression calculated at compile time

re_bytes_match

Returns the whole input if a match is found

re_bytes_match_static

Returns the whole input if a match is found. Regular expression calculated at compile time

re_bytes_matches

Returns all the matched parts

re_bytes_matches_static

Returns all the matched parts. Regular expression calculated at compile time

re_capture

Returns the first capture group

re_capture_static

Returns the first capture group. Regular expression calculated at compile time

re_captures

Returns all the capture groups

re_captures_static

Returns all the capture groups, input/output error 5 5.0.1. Regular expression calculated at compile time

re_find

Returns the first match

re_find_static

Returns the first match. Regular expression calculated at compile time

re_match

Returns the whole input if a match is found

re_match_static

Returns the whole input if a match is found. Regular expression calculated at compile time

re_matches

Returns all the matched parts

re_matches_static

Returns all the matched parts. Regular expression calculated at compile time

recognize

if the child parser was successful, return the consumed input as produced value

return_error

Prevents backtracking if the child parser fails

sep

sep is the parser rewriting macro for whitespace separated formats

separated_list

separated_list(sep, X) returns a Vec

separated_nonempty_list

separated_nonempty_list(sep, X) returns a Vec

separated_pair

separated_pair(X,sep,Y) returns a tuple of its first and third child parsers if all 3 succeed

switch

choose the next parser depending on the result of the first one, if successful, and returns the result of the second parser

tag

declares a byte array as a suite to recognize

tag_bits

Matches the given bit pattern.

tag_no_case

declares a case insensitive ascii string as a suite to recognize

take

generates a parser consuming the specified number of bytes

take_bits

Consumes the specified number of bits and returns them as the specified type.

take_str

same as take! but returning a &str

take_till

returns the longest list of bytes until the provided function succeeds

take_till1

returns the longest non empty list of bytes until the provided function succeeds

take_until

consumes data until it finds the specified tag.

take_until1

consumes data (at least one byte) until it error 11004 icq the specified tag

take_while

returns the longest list of bytes until the provided function fails.

take_while1

returns the longest (non empty) list of bytes until the provided function fails.

take_while_m_n

returns a list of bytes or characters for which the provided function returns true. the returned list's size will be at least m, and at most n

tap

allows access to the parser's result without affecting it

terminated

terminated returns the result of its first parser if both succeed

try_parse

A bit likethis macro will return the remaining input and parsed value if the child parser returnedand will do an early return for the side.

tuple

chains parsers and assemble the sub results in a tuple.

u16

if the parameter is nom::Endianness::Big, parse a big endian u16 integer, otherwise a little endian u16 integer

u32

if the parameter is nom::Endianness::Big, parse a big endian u32 integer, otherwise a little endian u32 integer

u64

if the parameter is nom::Endianness::Big, parse a big endian u64 integer, otherwise a little endian u64 integer

u128

if the parameter is nom::Endianness::Big, parse a big endian u128 integer, otherwise a little endian u128 integer

value
verify

returns the result of the child parser if it satisfies a verification function

wrap_sep

applies the separator parser before the other parser

wsDeprecated
CompareResult

indicates wether a comparison was input/output error 5 5.0.1, an error, or if more data was needed

Err

The enum indicates the parser was not successful

Needed

Contains information on needed data if a parser returned

AsBytes

Helper trait for types that can be viewed as a byte slice

AsChar

transforms common types to a char for basic token parsing

Compare

abstracts comparison operations

ErrorConvert

equivalent From implementation to avoid orphan rules in bits parsers

ExtendInto

abstracts something which can extend an used to build modified input slices in

FindSubstring

look for a substring in self

FindToken

look for a token in self

HexDisplay

Helper trait to show a byte slice as a hex dump

InputIter

abstracts common iteration operations on the input type

InputLength

abstract method to calculate the input length

InputTake

abstracts slicing operations

InputTakeAtPosition

methods to take as much input as possible until the provided function returns true for the current element

Offset

useful functions to calculate the offset between slices and show a hexdump of a slice

ParseTo

used to integrate str's parse() method

Slice

slicing operations using ranges

ToUsize

Helper trait to convert numbers to usize

UnspecializedInput

Dummy trait used for default implementations (currently only used for ).

dbg_dmp

Prints a message and the input input/output error 5 5.0.1 the parser fails

IResult

Holds the result of parsing functions

Keyboard Shortcuts

Show this help dialog
Focus the search field
Move up in search results
Move down in search results
Switch tab
Go to active search result
Expand all sections
Collapse all sections

Search Tricks

Prefix searches with a type followed by a colon (e.g., ) to restrict the search to a given type.

Accepted types are:,,and .

Search functions by type signature (e.g., or )

Search multiple things at once by splitting your query with comma (e.g., or )

awk '{print 1}'

kill 9 ps A awk '{print 1}'